Dissecting the Role of Critical Residues and Substrate Preference of a Fatty Acyl-CoA Synthetase (FadD13) of Mycobacterium tuberculosis
نویسندگان
چکیده
Newly emerging multi-drug resistant strains of Mycobacterium tuberculosis (M.tb) severely limit the treatment options for tuberculosis (TB); hence, new antitubercular drugs are urgently needed. The mymA operon is essential for the virulence and intracellular survival of M.tb and thus represents an attractive target for the development of new antitubercular drugs. This study is focused on the structure-function relationship of Fatty Acyl-CoA Synthetase (FadD13, Rv3089) belonging to the mymA operon. Eight site-directed mutants of FadD13 were designed, constructed and analyzed for the structural-functional integrity of the enzyme. The study revealed that mutation of Lys(487) resulted in approximately 95% loss of the activity thus demonstrating its crucial requirement for the enzymatic activity. Comparison of the kinetic parameters showed the residues Lys(172) and Ala(302) to be involved in the binding of ATP and Ser(404) in the binding of CoenzymeA. The influence of mutations of the residues Val(209) and Trp(377) emphasized their importance in maintaining the structural integrity of FadD13. Besides, we show a synergistic influence of fatty acid and ATP binding on the conformation and rigidity of FadD13. FadD13 represents the first Fatty Acyl-CoA Synthetase to display biphasic kinetics for fatty acids. FadD13 exhibits a distinct preference for C(26)/C(24) fatty acids, which in the light of earlier reported observations further substantiates the role of the mymA operon in remodeling the cell envelope of intracellular M.tb under acidic conditions. A three-dimensional model of FadD13 was generated; the docking of ATP to the active site verified its interaction with Lys(172), Ala(302) and Lys(487) and corresponded well with the results of the mutational studies. Our study provides a significant understanding of the FadD13 protein including the identification of residues important for its activity as well as in the maintenance of structural integrity. We believe that the findings of this study will provide valuable inputs in the development of inhibitors against the mymA operon, an important target for the development of antitubercular drugs.
منابع مشابه
The Mycobacterium tuberculosis very-long-chain fatty acyl-CoA synthetase: structural basis for housing lipid substrates longer than the enzyme.
The Mycobacterium tuberculosis acid-induced operon MymA encodes the fatty acyl-CoA synthetase FadD13 and is essential for virulence and intracellular growth of the pathogen. Fatty acyl-CoA synthetases activate lipids before entering into the metabolic pathways and are also involved in transmembrane lipid transport. Unlike soluble fatty acyl-CoA synthetases, but like the mammalian integral-membr...
متن کاملAn Acyl-CoA Synthetase in Mycobacterium tuberculosis Involved in Triacylglycerol Accumulation during Dormancy
Latent infection with dormant Mycobacterium tuberculosis is one of the major reasons behind the emergence of drug-resistant strains of the pathogen worldwide. In its dormant state, the pathogen accumulates lipid droplets containing triacylglycerol synthesized from fatty acids derived from host lipids. In this study, we show that Rv1206 (FACL6), which is annotated as an acyl-CoA synthetase and r...
متن کاملCyclic AMP-dependent protein lysine acylation in mycobacteria regulates fatty acid and propionate metabolism.
Acetylation of lysine residues is a posttranslational modification that is used by both eukaryotes and prokaryotes to regulate a variety of biological processes. Here we identify multiple substrates for the cAMP-dependent protein lysine acetyltransferase from Mycobacterium tuberculosis (KATmt). We demonstrate that a catalytically important lysine residue in a number of FadD (fatty acyl CoA synt...
متن کاملThe effects of ginsenoside Rb1 on fatty acid β-oxidation, mediated by AMPK, in the failing heart
Objective(s): This study intended to investigate the effects of Ginsenoside-Rbl (Gs-Rbl) on fatty acid β-oxidation (FAO) in rat failing heart and to identify potential mechanisms of Gs-Rbl improving heart failure (HF) by FAO pathway dependent on AMP-activated protein kinase (AMPK). Materials and Methods: Rats with chronic HF, induced by adriamycin (Adr), were randomly grouped into 7 groups. Gs-...
متن کاملProbing reactivity and substrate specificity of both subunits of the dimeric Mycobacterium tuberculosis FabH using alkyl-CoA disulfide inhibitors and acyl-CoA substrates.
The dimeric Mycobacterium tuberculosis FabH (mtFabH) catalyses a Claisen-type condensation between an acyl-CoA and malonyl-acyl carrier protein (ACP) to initiate the Type II fatty acid synthase cycle. To analyze the initial covalent acylation of mtFabH with acyl-CoA, we challenged it with mixture of C6-C20 acyl-CoAs and the ESI-MS analysis showed reaction at both subunits and a strict specifici...
متن کامل